nvflare.app_opt.xgboost.metrics_cb module

class MetricsCallback(writer: LogWriter)[source]

Bases: TrainingCallback

after_iteration(model, epoch: int, evals_log: Dict[str, Dict[str, List[float] | List[Tuple[float, float]]]])[source]

Run after each iteration. Returns True when training should stop.

Parameters:
  • model – Eeither a Booster object or a CVPack if the cv function in xgboost is being used.

  • epoch – The current training iteration.

  • evals_log

    A dictionary containing the evaluation history:

    {"data_name": {"metric_name": [0.5, ...]}}