# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import xgboost as xgb
from nvflare.app_opt.xgboost.data_loader import XGBDataLoader
[docs]
class CSVDataLoader(XGBDataLoader):
def __init__(self, folder: str):
"""Reads CSV dataset and return XGB data matrix.
Note: if split mode is vertical, we assume the label owner is rank 0.
Args:
folder: Folder to find the CSV files
"""
self.folder = folder
[docs]
def load_data(self):
train_path = f"{self.folder}/{self.client_id}/train.csv"
valid_path = f"{self.folder}/{self.client_id}/valid.csv"
if self.rank == 0 or self.data_split_mode == xgb.core.DataSplitMode.ROW:
label = "&label_column=0"
else:
label = ""
train_data = xgb.DMatrix(train_path + f"?format=csv{label}", data_split_mode=self.data_split_mode)
valid_data = xgb.DMatrix(valid_path + f"?format=csv{label}", data_split_mode=self.data_split_mode)
return train_data, valid_data