Source code for nvflare.app_opt.sklearn.sklearn_executor

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path

import joblib
import tensorboard

from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable
from nvflare.apis.event_type import EventType
from nvflare.apis.executor import Executor
from nvflare.apis.fl_constant import FLContextKey, ReturnCode
from nvflare.apis.fl_context import FLContext
from nvflare.apis.shareable import Shareable, make_reply
from nvflare.apis.signal import Signal
from nvflare.app_common.abstract.learner_spec import Learner
from nvflare.app_common.app_constant import AppConstants
from nvflare.security.logging import secure_format_exception


def _get_global_params(shareable: Shareable, fl_ctx: FLContext):
    # retrieve current global params download from server's shareable
    dxo = from_shareable(shareable)
    current_round = shareable.get_header(AppConstants.CURRENT_ROUND)
    fl_ctx.set_prop(AppConstants.CURRENT_ROUND, current_round)
    return current_round, dxo.data


[docs] class SKLearnExecutor(Executor): def __init__(self, learner_id: str, train_task=AppConstants.TASK_TRAIN): """An Executor interface for scikit-learn Learner. Args: learner_id (str): id pointing to the learner object train_task (str, optional): label to dispatch train task. Defaults to AppConstants.TASK_TRAIN. """ super().__init__() self.learner_id = learner_id self.learner = None self.train_task = train_task self.local_model_path = None self.global_model_path = None self.client_id = None self.writer = None self.fl_ctx = None
[docs] def handle_event(self, event_type: str, fl_ctx: FLContext): if event_type == EventType.START_RUN: self.initialize(fl_ctx) elif event_type == EventType.ABORT_TASK: try: if self.learner: self.learner.abort(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner abort exception: {secure_format_exception(e)}") elif event_type == EventType.END_RUN: self.finalize(fl_ctx)
[docs] def initialize(self, fl_ctx: FLContext): self.fl_ctx = fl_ctx self._print_configs(fl_ctx) self.load_log_tracker() try: engine = fl_ctx.get_engine() self.learner = engine.get_component(self.learner_id) if not isinstance(self.learner, Learner): raise TypeError(f"learner must be Learner type. Got: {type(self.learner)}") self.learner.initialize(engine.get_all_components(), fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner initialize exception: {secure_format_exception(e)}") # set the paths according to fl_ctx app_dir = fl_ctx.get_prop(FLContextKey.APP_ROOT) self.local_model_path = os.path.join(app_dir, "model_local.joblib") self.global_model_path = os.path.join(app_dir, "model_global.joblib")
[docs] def execute( self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal, ) -> Shareable: self.log_info(fl_ctx, f"Client trainer got task: {task_name}") if abort_signal.triggered: self.finalize(fl_ctx) return make_reply(ReturnCode.TASK_ABORTED) try: if task_name == self.train_task: (current_round, global_params) = _get_global_params(shareable, fl_ctx) if current_round > 0: # first round for parameter initialization # no model evaluation self.validate(current_round, global_params, fl_ctx) return self.train(current_round, global_params, fl_ctx) else: self.log_error(fl_ctx, f"Could not handle task: {task_name}") return make_reply(ReturnCode.TASK_UNKNOWN) except Exception as e: # Task execution error, return EXECUTION_EXCEPTION Shareable self.log_exception(fl_ctx, f"learner execute exception: {secure_format_exception(e)}") return make_reply(ReturnCode.EXECUTION_EXCEPTION)
[docs] def train(self, current_round, global_param, fl_ctx: FLContext) -> Shareable: self.log_info(fl_ctx, f"Client {self.client_id} perform local train") # sklearn algorithms usually needs two different processing schemes # one for first round (generate initial centers for clustering, regular training for svm) # the other for following rounds (regular training for clustering, no further training for svm) # hence the current round is fed to learner to distinguish the two params, model = self.learner.train(current_round, global_param, fl_ctx) # save model and return dxo containing the params self.save_model_local(model) dxo = DXO(data_kind=DataKind.WEIGHTS, data=params) dxo.set_meta_prop(MetaKey.NUM_STEPS_CURRENT_ROUND, self.learner.n_samples) self.log_info(fl_ctx, "Local epochs finished. Returning shareable") return dxo.to_shareable()
[docs] def validate(self, current_round, global_param, fl_ctx: FLContext) -> Shareable: # retrieve current global center download from server's shareable self.log_info(fl_ctx, f"Client {self.client_id} perform local evaluation") metrics, model = self.learner.validate(current_round, global_param, fl_ctx) self.save_model_global(model) for key, value in metrics.items(): self.log_value(key, value, current_round)
[docs] def finalize(self, fl_ctx: FLContext): try: if self.learner: self.learner.finalize(fl_ctx) except Exception as e: self.log_exception(fl_ctx, f"learner finalize exception: {secure_format_exception(e)}")
def _print_configs(self, fl_ctx: FLContext): # get and print the args fl_args = fl_ctx.get_prop(FLContextKey.ARGS) self.client_id = fl_ctx.get_identity_name() self.log_info( fl_ctx, f"Client {self.client_id} initialized with configs: \n {fl_args}", )
[docs] def load_log_tracker(self): app_dir = self.fl_ctx.get_prop(FLContextKey.APP_ROOT) self.writer = tensorboard.summary.Writer(app_dir)
[docs] def log_value(self, key, value, step): if self.writer: self.writer.add_scalar(key, value, step) self.writer.flush()
[docs] def save_model_local(self, model: any) -> None: joblib.dump(model, self.local_model_path)
[docs] def save_model_global(self, model: any) -> None: joblib.dump(model, self.global_model_path)