Source code for nvflare.app_opt.sklearn.joblib_model_param_persistor

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

from joblib import dump, load

from nvflare.apis.event_type import EventType
from nvflare.apis.fl_constant import FLContextKey
from nvflare.apis.fl_context import FLContext
from nvflare.app_common.abstract.model import ModelLearnable, ModelLearnableKey, make_model_learnable
from nvflare.app_common.abstract.model_persistor import ModelPersistor
from nvflare.app_common.app_constant import AppConstants


[docs] class JoblibModelParamPersistor(ModelPersistor): def __init__(self, initial_params, save_name="model_param.joblib"): """ Persist global model parameters from a dict to a joblib file Note that this contains the necessary information to build a certain model but may not be directly loadable """ super().__init__() self.initial_params = initial_params self.save_name = save_name def _initialize(self, fl_ctx: FLContext): # get save path from FLContext app_root = fl_ctx.get_prop(FLContextKey.APP_ROOT) self.log_dir = app_root self.save_path = os.path.join(self.log_dir, self.save_name) if not os.path.exists(self.log_dir): os.makedirs(self.log_dir) fl_ctx.sync_sticky()
[docs] def load_model(self, fl_ctx: FLContext) -> ModelLearnable: """Initialize and load the Model. Args: fl_ctx: FLContext Returns: ModelLearnable object """ if os.path.exists(self.save_path): self.logger.info("Loading server model") model = load(self.save_path) else: self.logger.info(f"Initialization, sending global settings: {self.initial_params}") model = self.initial_params model_learnable = make_model_learnable(weights=model, meta_props=dict()) return model_learnable
[docs] def handle_event(self, event: str, fl_ctx: FLContext): if event == EventType.START_RUN: self._initialize(fl_ctx)
[docs] def save_model(self, model_learnable: ModelLearnable, fl_ctx: FLContext): """Persists the Model object. Args: model_learnable: ModelLearnable object fl_ctx: FLContext """ if model_learnable: if fl_ctx.get_prop(AppConstants.CURRENT_ROUND) == fl_ctx.get_prop(AppConstants.NUM_ROUNDS) - 1: self.logger.info(f"Saving received model to {os.path.abspath(self.save_path)}") # save 'weights' which contains model parameters model = model_learnable[ModelLearnableKey.WEIGHTS] dump(model, self.save_path, compress=1)