Source code for nvflare.app_opt.pt.params_converter

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict

import numpy as np
import torch

from nvflare.app_common.abstract.params_converter import ParamsConverter


[docs] class NumpyToPTParamsConverter(ParamsConverter):
[docs] def convert(self, params: Dict, fl_ctx) -> Dict: tensor_shapes = fl_ctx.get_prop("tensor_shapes") exclude_vars = fl_ctx.get_prop("exclude_vars") return_params = {} if tensor_shapes: return_params = { k: torch.as_tensor(np.reshape(v, tensor_shapes[k])) if k in tensor_shapes else torch.as_tensor(v) for k, v in params.items() } else: return_params = {k: torch.as_tensor(v) for k, v in params.items()} if exclude_vars: for k, v in exclude_vars.items(): return_params[k] = v return return_params
[docs] class PTToNumpyParamsConverter(ParamsConverter):
[docs] def convert(self, params: Dict, fl_ctx) -> Dict: return_tensors = {} tensor_shapes = {} exclude_vars = {} for k, v in params.items(): if isinstance(v, torch.Tensor): return_tensors[k] = v.cpu().numpy() tensor_shapes[k] = v.shape else: exclude_vars[k] = v if tensor_shapes: fl_ctx.set_prop("tensor_shapes", tensor_shapes) if exclude_vars: fl_ctx.set_prop("exclude_vars", exclude_vars) self.logger.warning( f"{len(exclude_vars)} vars excluded as they were non-tensor type: " f"{list(exclude_vars.keys())}" ) return return_tensors