Source code for nvflare.app_opt.pt.fedproxloss

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch.nn.modules.loss import _Loss


[docs] class PTFedProxLoss(_Loss): def __init__(self, mu: float = 0.01) -> None: """Compute FedProx loss: a loss penalizing the deviation from global model. Args: mu: weighting parameter """ super().__init__() if mu < 0.0: raise ValueError("mu should be no less than 0.0") self.mu = mu
[docs] def forward(self, input, target) -> torch.Tensor: """Forward pass in training. Args: input (nn.Module): the local pytorch model target (nn.Module): the copy of global pytorch model when local clients received it at the beginning of each local round Returns: FedProx loss term """ prox_loss: torch.Tensor = 0.0 for param, ref in zip(input.named_parameters(), target.named_parameters()): prox_loss += (self.mu / 2) * torch.sum((param[1] - ref[1]) ** 2) return prox_loss