Source code for nvflare.app_opt.lightning.callbacks

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from copy import deepcopy

import pytorch_lightning as pl
from pytorch_lightning.callbacks import Callback

from nvflare.fuel.utils.log_utils import get_obj_logger


[docs] class RestoreState(Callback): """Callback to restore the local optimizer and learning rate scheduler states at each round of FL""" def __init__(self): super().__init__() self.logger = get_obj_logger(self) self.optimizer_states = [] self.scaler_states = [] self.lr_scheduler_states = []
[docs] def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"): if len(self.optimizer_states) > 0: trainer.strategy.load_optimizer_state_dict({"optimizer_states": self.optimizer_states}) self.logger.info("optimizer states restored.") else: return if len(self.scaler_states) > 0: trainer.scaler.load_state_dict(self.scaler_states[0]) self.logger.info("scaler states restored.") if len(self.lr_scheduler_states) > 0: for config, lr_scheduler_state in zip(trainer.lr_scheduler_configs, self.lr_scheduler_states): config.scheduler.load_state_dict(lr_scheduler_state) self.logger.info("LR scheduler states restored.")
[docs] def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule"): self.optimizer_states = [deepcopy(opt.state_dict()) for opt in trainer.optimizers] if trainer.scaler: self.scaler_states = [deepcopy(trainer.scaler.state_dict())] self.lr_scheduler_states = [deepcopy(config.scheduler.state_dict()) for config in trainer.lr_scheduler_configs]