Source code for nvflare.app_opt.he.homomorphic_encrypt

# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tenseal as ts

from nvflare.apis.fl_constant import FLContextKey
from nvflare.apis.fl_context import FLContext
from nvflare.fuel.sec.security_content_service import LoadResult, SecurityContentService


[docs] def load_tenseal_context_from_workspace(ctx_file_name: str, fl_ctx: FLContext): """Loads homomorphic encryption (HE) context from TenSEAL (https://github.com/OpenMined/TenSEAL) containing encryption keys and parameters. Args: ctx_file_name: filepath of TenSEAL context file fl_ctx: FL context Returns: TenSEAL context """ is_secure_mode = fl_ctx.get_prop(FLContextKey.SECURE_MODE, True) data, rc = SecurityContentService.load_content(ctx_file_name) bad_rcs = [LoadResult.INVALID_CONTENT, LoadResult.NO_SUCH_CONTENT] if is_secure_mode: bad_rcs.extend([LoadResult.INVALID_SIGNATURE, LoadResult.NOT_SIGNED]) if rc in bad_rcs: raise ValueError("Cannot load tenseal_context {}: {}".format(ctx_file_name, rc)) context = ts.context_from(data) return context
[docs] def count_encrypted_layers(encrypted_layers: dict): """Count number of encrypted layers homomorphic encryption (HE) layers/variables.""" n_total = len(encrypted_layers) n_encrypted = 0 for e in encrypted_layers.keys(): if encrypted_layers[e]: n_encrypted += 1 return n_encrypted, n_total
[docs] def serialize_nested_dict(d): for k, v in d.items(): if isinstance(v, dict): serialize_nested_dict(v) else: if isinstance(v, ts.CKKSVector): d[k] = v.serialize() return d
[docs] def deserialize_nested_dict(d, context): for k, v in d.items(): if isinstance(v, dict): deserialize_nested_dict(v, context) else: if isinstance(v, bytes): d[k] = ts.ckks_vector_from(context, v) return d